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There is given a completion to Theorem 3.3 of [ JJ] by showing that on compact
subsets of IR N (or eN) preserving Markov's inequality, some speed of polynomial
approximation leads to Lipschitz- and Zygmund-type classes of functions. (C' 1995

Academic Press. Inc.

The following basic notation will be used throughout the paper. IK is a
field of either real: IR or complex: C scalars, E is a non-empty compact sub
set of IK N, N?f; I. The supremum norm of a IK-valued function / over A c

IK N is denoted by II/IIA' and <~(IKN) is the set of algebraic polynomials in
N variables from IK of total degree at most n. Given a function / on A
define

Then

is a nonempty set of best approximations to / in ~ ( IK N). Also define the
geometric distance between x E IK N and the set A as

dist(x, A) := inf{ Ix- yl: YEA}

(1·\ is the usual Euclidean distance in IK N).
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The main objects of our considerations are the following Lipschitz-type
spaces. Given a nonnegative integer k and p E (0, I], a function f: IR N

-> IK
is said to belong to the space Lip(k + p, IR N

) itTfE C k (IR N
) and there exists

a constant M> 0 such that for every multi-index rx E if:~,

(1)

and

(2)

where Llhg(x) :=g(x + h) - g(x), x, h E [RN, is the first ditTerence of a func
tion of a function g defined on !R.N. Analogously, fEAk+p(!R. N) itT
fE Ck (IR N

), (1) holds and in (2) Ll h is replaced by the second ditTerence
Ll~:= LlhLl h, i.e.

(2')

is fulfilled. The norms in Lip(k + p, [RN) and Ak+ p( [RN) may be defined by
taking infima of the constants M in the definitions above. Then
Lip(k+p,[RN)=Ak+p([RN) with equivalent norms when O<p<1 and
Lip(k + I, IR N

) is strictly contained in A k + l(!R. N). We refer to [3] for a
more detailed discussion on these function spaces and their restriction to
general closed sets.

In [11, Theorem 3.3] it was presented a Bernstein-type sufficient condition
for a continuous function to have smoothness properties. There was
shown in particular that if a compact subset E of [RN has the property (4)
(cf. Lemma 2 below) then distECf,.'?P,.([RN))=O(n-r<k+ P )), kEif:+,
p E (0, I), implies that f can be extended to a function in Lip(k + p, [RN).
The purpose of this paper is to fill a certain gap that appeared in [II],
i.e. we are going to show that if p E (0, I] then one can construct an
extension of f to a function in Ak+p(IR N

).

We shall need this known result.

LEMMA I (see e.g. [8, Lemme IV 3,3]), There exist positive constants
Cx (depending only on rx E if: ~ ) such that for any closed subset E of [RN and
any e > 0 there exists a function u, E C"'" (IR N

) satisfying

u, = I in a neighbourhood of E,

u, = 0 if dist(x, E) ~ e,

640/81'3·2
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DEFINITION. A compact non-empty subset E of IK: N is said to preserve
the (IK: N) global Markov inequality if there exist constants M> 0 and r> 0
depending only on E and N, such that

IIDOCPIIE~Mn,lociIIPIIE, (3)

for all ex E l' ~, n ~ I and P E .~, ( IK: "'').
Very general examples of compacta preserving the global Markov

inequality (uniformly polynomially cuspidal sets) can be found in [4].

Taylor's formula and the global Markov inequality imply

LEMMA 2 [5, p. 112]. Let E be a compact subset of IK: N preserving the
global Markov inequalitJ'. For every n = I, 2, ... and every P E .~,( IK: N), if
dist(x, E) ~ I/n', x ElK: N, then

(4)

lvith the same M and r as in (3).

With these preliminaries we can state the basic observation.

THEOREM 3. Suppose E c [RN preserves the global Markov inequality and
f is a real-valued function defined on E such that

(5)

where r is given by (3), k is a non-negative integer and pE(O, 1]. Then there
exists afunction1EA k + p ([RN) such that1lE=f

Proof Set Qo=P 1 , Qn=P2n-P2n-1 where PnEP".E(f). For each n, let
Un = ue• be a CX:([RN) function obtained from Lemma 1 with en = 1/2"'.
Then

x

1:= I u"Qn
n=O

is an appropriate extension of f to [RN. Since u" IE = 1 and P" tends to f
uniformly on E we get 11 E =f

Take ex E l'~ and let En := {x E [RN: dist(x, E) ~ f: n}. Then
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~ I (IX) C~_!f2"rl~-PIIIDPQlIIEn
Lemma I Ii ~ ::x. f3

~ M 1 I (pIX) C~_/f2"rl~-PIIIDPQlll E
(4) P<;~

~M22nr''''IIQlIIIE' (6)
( 3)

By the assumption (5),

which together with (6) gives

(7)

Therefore

,,=0

That is, IE Ck
( IR N

) and the derivatives ofI of order not exceeding k are
uniformly bounded which is a necessary condition for 1to be in Ak +) IR N

).

Finally, to prove (2') for lwe have to estimate the second difference of the
derivatives of order k.

Let IX E !l'~ such that IIXI = k and let x, hE IR N
. Suppose Ihl < 1 and

choose m ~ 1 such that

We shall estimate

where

n=nl

ex:

I 1IL1~D~(ullQlI 111 Q;l'" ~ 4M4 I
(7)

11='7"'

The mean-value theorem used twice and (7) yields

11,12D~(u Q )11 ~ M IhI22"r(2-PIIt nn [R'" -....:::: 6 •
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This implies
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m-l

I IILl;'D~(unQn)IIIRN~M7IhIP.
n=O

Hence ILl;'D"I(x)l/lhIP is uniformly bounded on IR N which is what we need.
If Ihl ;?: I, then the estimation above is trivial, and the proof is completed.

In the case of If{ = C, Theorem 3 may be reformulated as follows:

THEOREM 4. Let E c eN preserve the global Markov inequality. If for a
complex function f defined on E it holds

(5' )

where r is given by (3), k is a non-negative integer and p E (0, I], then there
exists a function IE A k + p( 1R 2N

) such that 11 E =f

The proof proceeds along the same lines as the proof of Theorem 3.
A typical approach to Bernstein-Zygmund inverse theorems of approxi

mation theory leads to results that connect the speed of approximation to
the smoothness of the approximated function measured by some modulus.
The litterature contains numerous definitions of moduli, e.g. the ones for
convex subsets A of If{ N defined with help of the k : th difference:

For a If{-valued function f on A and a positive integer k the quantity

Wk(f, 0) := sup{ \Ll7,/(x)\ : Ihj ~ 0, x E A, dist(x, If{ N\A) < k Ihj}, 0> 0,

where Ll~ is the k-th difference, is called the modulus of continuity off of
order k.

It is not possible to restate directly the above definition of moduli of
order greater than one for sets with complicated structure. To avoid
problems cuased by the shape of the function domain we propose the
following formula.

First, denote by L j ( If{ N, If{) the space of j-linear functionals from If{ N to
If{. If L E L j ( If{ N, IK) and WE If{ N then, as usual, Lw j = L( w, ..., w), with the
argument w j-times repeated.

Take A to be any nonempty closed subset of If{ Nand f: A -+ If{. For an
integer k ~ 2, the quantity

I
k-l I

iiJdf,o) :=sup . inf sup f(x)-f(y)- I L)x-y)j
yEA LJELJ(IMN.IM) xEA ._]

j= I ...., k -I Ix-yl';;o J-

is said to be the modulus of continuity off of order k.



BERNSTEIN'S THEOREMS 321

Remark. For every integer k ~ 1 there exist positive constants Ck and
Ck such that for every interval [a, bJ and for every function f continuous
on [a, bJ the inequality

holds. Therefore wk is a very natural extension of the modulus of continuity
OJk' The left inequality was shown in [6], the right one in [10].

We do not claim originality of the definition of wk(f, b). Methods of
measuring smoothness of functions given on general subset of IR N by
means of local polynomial approximation was presented in a series of
papers by Brudnyi (see e.g. [2] and references there). In the complex
plane, Vorob'ev and Polyakov [9] introduced an extension moduli of
higher order by means of local interpolation on smooth arcs. Seven
years later Tamrazov presented a series of definition [7, pp. 47-49] of
moduli of continuity and smoothness for functions defined on general
plane sets and discussed thoroughly their approximation properties. The
inverse approximation theorem on plane continua that was proved by
Lebedev and Tamrazov did not cover the case of integer order of
smoothness. To complete this result, Bijvoets, Hoggeven and Korevaar
[ 1] introduced a generalized Zygmund modulus of smoothness, i.e. the
modulus of continuity of the second order (cf. [12]), to the case of
plane continua with the help of local approximation by polynomials of first
degree. We would like to show that wk(f, 0) yields a very convenient method
to reformulate Bernstein- or Zygmund-type inverse theorems in the classical
manner even for sets can possess such complicated structure as uniformly poly
nomially cuspidal sets.

PROPOSITION 5. Let E be a compact subset of ~ N preserving the global
Markov inequality. Suppose that for f: E ~~, (5) ifrri = IR or (5') if ~ = 1[,

holds. Then W[k+pJ + I(f, <5) = O(<5 k
+

p
).

Proof Let P" and Q" have similar meaning as in the proof of Theorem 3.
For a fixed y E E and J > 0 put

I 1 m - I

L'=-PIj)-I(}')=- " QIj)().,).I' ., 2m . " L. 11 ,

J. J. ,,~O

where m satisfies 2(m -II r < <5 -I ~ 2mr. Then, for x E E with Ix - y I~ J we
obtain



322 LITHNER AND W6JCIK

m-I

I
[k+p] I

f(x)-f(y)- j~1 Lj(x-.v)j

~n~m IQn(x)-Qn(y)l+ ~~~ IQn(X)-Qn(y)

[k+p] 1 IL: ~ Q;/}( y)(x - y)1
J~ I ).

(152''') 1'1
~ 2 I IIQnIIE+ M L L: ,IIQnIlE
(3) n~m n: 2"> [k+p] [k+p]+ I,;;; loci ,;;;2" ex.

~ Clbk+P+C2b[k+P]+1
(5), (5')

m-IL 2nr([p]+I-p)

n=O
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